Proton Beam Therapy for Pediatric Brain Tumor
نویسندگان
چکیده
Cancer is a major cause of childhood death, with central nervous system (CNS) neoplasms being the second most common pediatric malignancy, following hematological cancer. Treatment of pediatric CNS malignancies requires multimodal treatment using a combination of surgery, chemotherapy, and radiotherapy, and advances in these treatments have given favorable results and longer survival. However, treatment-related toxicities have also occurred, particularly for radiotherapy, after which secondary cancer, reduced function of irradiated organs, and retarded growth are significant problems. Proton beam therapy (PBT) is a particle radiotherapy with excellent dose localization that permits treatment of liver and lung cancer by administration of a high dose to the tumor while minimizing damage to surrounding normal tissues. Thus, PBT has the potential advantages for pediatric cancer. In this context, we review the current knowledge on PBT for treatment of pediatric CNS malignancies.
منابع مشابه
Evaluation of the effective dose during PBFT for brain cancer: A Monte Carlo Study
Introduction: Recently, an approach exploiting the proton therapy biological enhancement by using Boron atoms injected inside a tumor, has been proposed. Three alpha particles with an average energy around 4MeV are emitted from the point of reaction between a proton and boron. In addition, the 719 keV prompt gamma emitted by the proton Boron fusion reactions can be used for on-...
متن کاملCalculation of the Equivalent Dose of the First and the Most Important Secondary Particles in Brain Proton Therapy by Monte Carlo Simulation
Introduction: Due to nuclear interactions between the tissues and high-energy protons, the particles, including neutrons, positrons, and photons arise during proton therapy. This study aimed at investigating the dose distribution of proton and secondary particles, such as positrons, neutrons, and photons using the Monte Carlo method. Material and Methods:<...
متن کاملEvaluation of the dose and flux of secondary particles in the lung tissue in breast proton therapy using the Monte Carlo simulation code
Unlike proton therapy, conventional radiation therapy directs X-rays not only at the tumor but also unavoidably at nearby healthy tissue. Protons deliver radiation to tumor tissue while the healthy structures will be spared during proton therapy. When protons travel through matter, secondary particles like neutrons and photons are produced. It is believed that the secondary dose can lead to sec...
متن کاملCalculation of Neutron Dose Ratio of Heart, Lung and Liver due to breast cancer Proton Therapy using MCNPX code
Introduction: The proton beam produced in particle accelerators has an appropriate therapeutic potential. In this research, proton therapy of breast cancer is simulated using the MCNPX code in a MIRD phantom, also the contribution of scattered neutron dose during the proton therapy were calculated for the Heart, Lung and Liver. Materials and Methods: For si...
متن کاملMonte Carlo calculations of dose distribution for the treatment of gastric cancer with proton therapy
Proton therapy is a common form of external radiation therapy based on the manipulation of Bragg peak of this beam, it can treat the tumor by delivering high levels of doses to it, while protecting surrounding healthy tissues against radiation. In this work, the dose distribution of proton and secondary particles such as neutrons, photons, electrons and positrons in gastric cancer proton therap...
متن کامل